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Abstract
We consider a large class of polynomial planar differential equations proposed
by Cherkas (1976 Differensial’nye Uravneniya 12 201–6), and show that
these systems admit a Lagrangian description via the Jacobi last multiplier
(JLM). It is shown how the potential term can be mapped either to a linear
harmonic oscillator potential or into an isotonic potential for specific values
of the coefficients of the polynomials. This enables the identification of the
specific cases of isochronous motion without making use of the computational
procedure suggested by Hill et al (2007 Nonlinear Anal.: Theor. Methods Appl.
67 52–69), based on the Pleshkan algorithm. Finally, we obtain a Lagrangian
description and perform a similar analysis for a cubic system to illustrate the
applicability of this procedure based on Jacobi’s last multiplier.

PACS numbers: 45.20.Jj, 45.30.+s

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The identification of isochronous dynamical systems, whose motions are periodic in their phase
space, has attracted the attention of several researchers in both the physics and mathematics
communities. Special mention must be made of the recent results of Calogero et al [6–8].
In [10] the authors have shown that although the space of the isochronous potentials is fairly
large, up to a shift x → x +a and the addition of a constant, all rational isochronous potentials
are described by either the linear harmonic oscillator potential V (x) = 1

2w2x2 or the isotonic

* Dedicated to Professor Francesco Calogero on his 75th birthday with great respect and admiration.
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potential V (x) = 1
8w2x2 + c2

x2 , where c is a nonzero constant [1–5]. The systems described
by them are characterized by a family of oscillatory solutions with the same time period
T = 2π/w. However, there exist other classes of isochronous systems described by irrational
potentials, for instance potentials for which the second derivative has a discontinuity.

The study of the isochronicity problem for parametric families of ordinary differential
equations (ODEs) is a nontrivial problem and requires tremendous computation work. Often
the high degree of computations that are generally involved tend to suppress some of the
geometrical aspects of the theory. Hence it is desirable to study this problem from a different
angle. In this paper, we re-examine the polynomial Cherkas system, studied in [15], from the
Lagrangian dynamics point of view. We construct a Lagrangian for the Cherkas system using
the Jacobi last multiplier (JLM) [18–22] and derive the corresponding Hamiltonian function.
By constructing an obvious transformation of variables we can easily map the Hamiltonian
to that of the linear harmonic oscillator or to an isotonic potential. This enables us to invoke
another class of isochronous potentials apart from the harmonic oscillator. Tacitly we exploit
the criteria of isochronicity due to Urabe [25]. In fact, in an interesting paper [9] the authors
obtained, by an analysis of an Urabe-function, certain necessary and sufficient conditions for
isochronicity of cubic systems reducible to a Liénard-type system. A simple proof of the
criterion based on a formula from Landau and Lifshitz [16] is obtained in [23]. It turns out
that  in  most  cases  the  transformation  is canonical.  Our  approach   based  on    the   Jacobi last
multiplier is marked by a remarkable degree of simplicity.

In [14] the author studied the second class of Liénard system (Liénard II)

x ′′ + f (x)x ′2 + g(x) = 0,

with a center at the origin 0 and investigated conditions under which it exhibited isochronicity.
In addition, he has given a necessary and sufficient condition for the isochronicity of 0 when
f and g are analytic (not necessarily odd). This approach enables him to present in an
algorithmic way the conditions for a point of Liénard II to be an isochronous center. In
particular he has found, in an alternative manner, the isochrones of the quadratic Loud system
[17]. Interestingly, Chouikha also classified a five-parameter family of reversible cubic systems
having isochronous centers at the origin. In this paper, we study this class of cubic systems
using the JLM approach. In particular, by using the JLM, we obtain a Lagrangian description
of the cubic system studied in [14]. Our calculations illustrate the utility of Jacobi’s last
multiplier for studying the isochronicity problem of parametric families of ODEs, without
having to take recourse to high power computations.

The paper is organized as follows. In section 2, we present a brief description of the
Cherkas system and Jacobi’s last multiplier. We also describe the connection between the
JLM and Lagrangian in this section. In section 3, we outline the mapping of the potential
to the harmonic oscillator and to the isotonic oscillator potentials. In section 4, we obtain
specific isochronous cases of the restricted Cherkas system. In section 5, we illustrate the
applicability of our procedure to a cubic system and identify certain isochronous cases which
were previously obtained by Chouikha in [14], using an entirely different approach. Finally,
we present a modest outlook in section 6.

2. The Cherkas system revisited

The following polynomial system:

ẋ = y(1 + x)

ẏ = −x − a1x
2 − a2x

3 − a3x
4 − a4(x + a5x

2)y − a6y
2, (2.1)

2



J. Phys. A: Math. Theor. 43 (2010) 125202 A G Choudhury et al

where the ai, 1 � i � 6, are the arbitrary real coefficients, was investigated originally by
Cherkas [13]. In this paper, we will consider a special case of such a system when the
coefficient a4 = 0, so that we can essentially restrict our analysis to the following class of
systems:

ẋ = p1(x)y,

ẏ = q0(x) + q2(x)y2. (2.2)

Such a system corresponds to the second-order (Liénard-type) equation

ẍ + f (x)ẋ2 + g(x) = 0, (2.3)

with

f (x) = −
(

p′
1(x) + q2(x)

p1(x)

)
, g(x) = −p1(x)q0(x). (2.4)

Sabatini in [24] studied the period function of such equations and deduced a sufficient condition
for the monotonicity of the period function, or for the isochronicity of the center of the equation.

Our motivation is somewhat different, since we wish to investigate the isochronous cases
of the restricted Cherkas system from the perspective of the Lagrangian dynamics. Our
analysis is based on the extensive use of the JLM which is introduced in the following section.

2.1. Jacobi last multipliers and the Lagrangian

Consider a system of first-order ordinary differential equations:

ẋi = Xi(t, x1, . . . , xn), i = 1, . . . , n. (2.5)

The solutions of the system are the integral curves of the vector field � in R
n ≈ T R. A

Jacobi multiplier M(t, x1, . . . , xn) for such a vector field is basically an integrating factor of
the system (2.5) such that

div(MXi) = ∂M

∂t
+

∑
i

∂(MXi)

∂xi
= 0,

which may be written as

d log M

dt
+

∑
i

∂Xi

∂xi
= 0. (2.6)

Clearly for a second-order ODE, ẍ = F(t, x · ẋ), which can be expressed as the system

ẋ = v, v̇ = F(t, x, v),

it follows that
d log M

dt
+

∂F
∂ẋ

= 0. (2.7)

The relationship between the Lagrangian and the JLM is apparent from the following
consideration. The Euler–Lagrange equation

d

dt

(
∂L

∂ẋ

)
= ∂L

∂x

may be written as

∂2L

∂t∂ẋ
+ ẋ

∂2L

∂x∂ẋ
+ F(x, ẋ)

∂2L

∂ẋ2
= ∂L

∂x
, (2.8)

3
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where we have used the fact that ẍ = F(x, ẋ). Differentiating (2.8) with respect to ẋ we
obtain

d

dt
log

(
∂2L

∂ẋ2

)
+

∂F
∂ẋ

= 0; (2.9)

it is being assumed that ∂2L/∂ẋ2 �= 0. This shows that ∂2L/∂ẋ2 satisfies the defining equation
(2.7) for the JLM of a second-order ODE and therefore we have

M = ∂2L

∂ẋ2
. (2.10)

2.2. A Lagrangian description

We now return to (2.3). The Jacobi multiplier for this equation is given by a solution of

d

dt
log M +

2

p1(x)
(p′

1(x) + q2(x))ẋ = 0. (2.11)

Its solution is given by

M(x) =
(

1

p1(x)
exp

[
−

∫ x q2(s)

p1(s)
ds

])2

=
(

exp
∫ x

f (s) ds

)2

, (2.12)

and is clearly non-negative. It is necessary to point out that for (2.3) the JLM is independent
of ẋ. Using (2.10) and (2.12) it is easy to derive the Lagrangian of (2.3), which has the form

L(x, ẋ) = 1
2M(x)ẋ2 + R(x, t)ẋ + S(x, t), (2.13)

where R(x, t) and S(x, t) are the arbitrary functions of their respective arguments. Their explicit
forms may be fixed by comparing the Euler–Lagrange equation of motion as obtained from
the above Lagrangian L and (2.3). Since

d

dt

(
∂L

∂ẋ

)
= M(x)ẍ + M ′(x)ẋ2 + Rt + Rxẋ

and
∂L

∂x
= 1

2
M ′(x)ẋ2 + Rxẋ + Sx,

the Euler–Lagrange equation yields the equation

M(x)ẍ + 1
2M ′(x)ẋ2 + Rt − Sx = 0.

By using (2.3) and after some cancellations we arrive at the following relation:

Sx − Rt = −M(x)g(x) = M(x)q0p1. (2.14)

Let S(x, t) = Gt + K(x) and R = Gx for some function G(x,t). Then Sx −Rt = K(x) so that
from (2.14) we find that

K(x) = −
∫ x

M(s)g(s) ds =
∫ x

M(s)q0(s)p1(s) ds (2.15)

and hence,

L(x, ẋ) = M(x)
ẋ2

2
+

dG

dt
−

∫ x

M(s)q0(s)p1(s) ds. (2.16)

The total derivative term is inconsequential and may be discarded. In this form, the Lagrangian
broadly resembles the natural form T − V, where T and V represent the kinetic and potential

4
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energies, respectively. Furthermore, if we apply a Legendre transformation to this Lagrangian,
we arrive at the expression for the corresponding Hamiltonian of the system, namely

H = 1

2

(
p√

M(x)

)2

+
∫ x

M(s)q0(s)p1(s) ds. (2.17)

Here the conjugate momentum is defined by the usual prescription

p = ∂L

∂ẋ
= M(x)ẋ, (2.18)

where we have omitted R(x, t) since it may be tucked away in the total derivative term dG/dt

which may be safely discarded. From (2.17) it is easy to see that the potential term is given by

V (x) =
∫ x

M(s)q0(s)p1(s) ds. (2.19)

3. Mapping V (x) to the linear harmonic oscillator potential/isotonic potential

In this section, we investigate the conditions under which the potential V (x) may be
mapped to a linear harmonic oscillator potential. Suppose there exists a transformation
x → Q = ψ(x) such that V (x) → V (Q) = 1

2w2Q2. Defining P = p/
√

M(x) it is
obvious that H = 1

2P 2 + 1
2w2Q2. If the transformation (p, x) → (P,Q) is to be a canonical

transformation, then it is necessary that the Poisson bracket {P,Q} = {p, x}, which leads to
the following condition:

ψ ′(x) =
√

M(x) and implies ψ(x) =
(∫ x √

M(s) ds + α

)
:= Q. (3.1)

Here α is a constant so that finally one has

V (x) = 1

2
w2Q2 = 1

2
w2

(∫ x √
M(s) ds + α

)2

.

Inserting the expression for V (x) on the left-hand side from (2.19), we get∫ x

M(s)q0(s)p1(s) ds = 1

2
w2

(∫ x √
M(s) ds + α

)2

. (3.2)

Similarly in the case of a canonical transformation to the isotonic potential it is necessary that∫ x

M(s)q0(s)p1(s) ds = 1

8
w2

(∫ x √
M(s) ds + α

)2

+
c2(∫ x √

M(s) ds + α
)2 . (3.3)

Therefore the problem of identifying isochronous cases reduces to finding the explicit forms
of p1 and q0, q2 which ensure that the conditions stated in (3.2) or (3.3) respectively be
fulfilled. The method adopted by Hill et al in [15] begins by recasting the original system
of equations (2.2) into a complex form and seeks a direct transformation which reduces the
system to the form ẋ = y and ẏ = −x. In deriving such a transformation they make use of
Pleshkan polynomials �j (j � 1), the vanishing of which provides the necessary and sufficient
conditions for the origin to be an isochronous center. The algorithmic nature of the calculation
follows from a use of the Hilbert basis theorem. By using the symbolic computation package
(REDUCE) they deduced the values of the coefficients of the polynomials pi (i = 0, 1) and
qj (j = 0, 1, 2) such that the origin is an isochronous center.

Our method is more direct and is able to reproduce all the relevant results in [15]. We
illustrate the method by considering a special case of the Cherkas system (2.1), (when a4 = 0),
below.

5
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4. Isochronous cases of the reduced Cherkas system

For the Cherkas system (2.1) the polynomials have the following forms:

p1(x) = (1 + x), (4.1)

q0(x) = −(x + a1x
2 + a2x

3 + a3x
4), q2(x) = −a6. (4.2)

Consequently from (2.4) we have

f (x) = (a6 − 1)

1 + x
, g(x) = (1 + x)(x + a1x

2 + a2x
3 + a3x

4). (4.3)

The JLM from (2.12) is given by

M(x) = (1 + x)2(a6−1), (4.4)

and the Lagrangian from (2.16) is

L(x, ẋ) = (1 + x)2(a6−1) 1

2
ẋ2 +

∫ x

(1 + s)2a6−1q0(s) ds. (4.5)

Expressing q0(s) as a polynomial is (1 + s) we have

L(x, ẋ) = (1 + x)2(a6−1) ẋ
2

2
−

∫ x 4∑
k=0

μk(1 + s)2a6+k−1 ds, (4.6)

where the μk, k = 0, . . . , 4, have the following values:

μ0 = a1 − a2 + a3 − 1, μ1 = −2a1 + 3a2 − 4a3 + 1, (4.7)

μ2 = a1 − 3a2 + 6a3, μ3 = a2 − 4a3, μ4 = a3. (4.8)

The corresponding expression for the Hamiltonian is

H = 1

2

(
(1 + x)1−a6p

)2
+

∫ x 4∑
k=0

μk(1 + s)2a6+k−1 ds. (4.9)

It is now evident that the potential is given by

V (x) =
4∑

k=0

μk

∫ x

(1 + s)2a6+k−1 ds =
4∑

k=0

μk

(1 + x)2a6+k

2a6 + k
(a6 �= 0). (4.10)

If the values of the coefficient a6 are such that 2a6 + k = 0, then it is to be assumed that the
corresponding μk of the numerator vanishes.

4.1. Case I: V(x) is mapped to the linear harmonic oscillator potential

We look for a transformation such that

V (x) = 1

2
w2

(
(1 + x)a6

a6
+ α

)2

+ γ, (4.11)

where α and γ are constants. Here we have included γ to account for a possible shift. From
(4.10) we have

w2

2a2
6

(1 + x)2a6 +
w2α

a6
(1 + x)a6 + γ +

1

2
w2α2 =

4∑
k=0

μk

2a6 + k
(1 + x)2a6+k. (4.12)

Note that the right-hand side of (4.12) consists of five terms while the left-hand side has only
three. Equating the coefficients of (1 + x)2a6 we find that

w2 = μ0a6. (4.13)

6



J. Phys. A: Math. Theor. 43 (2010) 125202 A G Choudhury et al

Table 1. List of cases when V (x) is mapped to a linear harmonic oscillator potential.

Case I Parameter Potential Canonical Cf [15]
Subcase values V (x) variables theorem 7

(i) a6 = −1 a1 = a2 = a3 = 0 1
2

(
1 − (1 + x)−1

)2
P = p(1 + x)2 Case 2

− 1
2 Q = 1 − (1 + x)−1

(iia) a6 = −2 a1 = 1
2 , a2 = a3 = 0 1

2

(
1
2 − 1

2 (1 + x)−2
)2

P = p(1 + x)3 Case 4

− 1
8 Q = 1

2 − 1
2 (1 + x)−2

(iiia) a6 = −3 a1 = 1, a2 = 1
3 , a3 = 0 1

2

(
1
3 − 1

3 (1 + x)−3
)2

P = p(1 + x)4 Case 6

− 1
18 Q = 1

3 − 1
3 (1 + x)−3

(iv) a6 = −4 a1 = 3
2 , a2 = 1

2 , a3 = 1
4

1
2

(
1
4 − 1

4 (1 + x)−4
)2

P = p(1 + x)5 Case 7

− 1
32 Q = 1

4 − 1
4 (1 + x)−4

Table 2. An alternative case where V (x) is mapped to a linear harmonic oscillator with ab = −2.

Case I Parameter Potential Transformation Cf [15]
Subcase values V (x) variables theorem 7

(iib) a6 = −2 a1 = 2, a2 = 1, a3 = 0 1
2 (1 − (1 + x)−1)2 P = p(1 + x)3 Case 5

− 1
2 Q = 1 − (1 + x)−1

The absence of a (1 + x) independent term obviously implies γ + 1/2w2α2 = 0. We can
identify four possible subcases wherein either

(i) a6 = 2a6 + 1 with μ1 �= 0 and μ2 = μ3 = μ4 = 0, s.t. w2α = μ1a6/(2a6 + 1),
(ii) a6 = 2a6 + 2 with μ2 �= 0 and μ1 = μ3 = μ4 = 0, s.t. w2α = μ2a6/(2a6 + 2),

(iii) a6 = 2a6 + 3 with μ3 �= 0 and μ1 = μ2 = μ4 = 0, s.t. w2α = μ3a6/(2a6 + 3),
(iv) a6 = 2a6 + 4 with μ4 �= 0 and μ1 = μ2 = μ3 = 0, s.t. w2α = μ4a6/(2a6 + 4).

In subcase (i) a6 = −1 while μ2 = μ3 = μ4 = 0 imply a1 = a2 = a3 = 0. Using these
values, it turns out that μ1 = 1 and μ0 = −1 from (4.7) while from (4.13) it follows that
w2 = 1. Hence α = a6/(2a6 + 1) = 1 and we find that γ = −1/2. Therefore, the potential
may be written as

V (x) = 1
2 (1 − (1 + x)−1)2 − 1

2 .

The remaining subcases can be handled similarly. We present the results in table 1.
There is an additional case hidden in subcase (iia) which corresponds to the choice

μ0 = μ1 = 0. In this case, one can still write the potential V (x) as a perfect square, as shown
in table 2. Figure 1 depicts the graphs of the potential V (x) occurring in column 3 of tables 1
and 2, respectively.

4.2. Case II: when V(x) is mapped to the isotonic potential

As mentioned earlier, we attempt to rewrite the potential V (x) of (4.10) as

4∑
k=0

μk

(1 + x)2a6+k

2a6 + k
= 1

8
w2

(
(1 + x)a6

a6
+ α

)2

+
c2(

(1+x)a6

a6
+ α

)2 .

7
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Figure 1. Graphs of the potentials V (x) in table 1.

We have found that one can set α = 0 so that
4∑

k=0

μk

a2
6(2a6 + k)

(1 + x)4a6+k = 1

8
w2

(
(1 + x)4a6

a4
6

)
+ c2.

The equation of the coefficients of (1 + x)4a6 gives

w2 = 4μ0a6. (4.14)

We can then identify four subcases which are enumerated below.

(i) 4a6 + 1 = 0 with μ1 = a2
6(2a6 + 1)c2 and μ2 = μ3 = μ4 = 0,

(ii) 4a6 + 2 = 0 with μ2 = a2
6(2a6 + 2)c2 and μ1 = μ3 = μ4 = 0,

(iii) 4a6 + 3 = 0 with μ3 = a2
6(2a6 + 3)c2 and μ1 = μ2 = μ4 = 0,

(iv) 4a6 + 4 = 0 with μ4 = a2
6(2a6 + 4)c2 and μ1 = μ2 = μ3 = 0.

The unknown coefficients, ai, are determined from the vanishing of the respective μk as
listed above and subsequently one may determine μ0 and the nonvanishing μk in each case.
The latter fixes the value of the nonzero constant c2. The results are presented in table 3.

In all the above results it is assumed that (1 + x) > 0. Also we have not simplified the
potentials any further to enable easier identification with the isotonic potential. The graphs of
the potential V (x) occurring in table 3 are shown in figure 2.

5. A cubic system

In [14] the author has analyzed the following five-parameter system:

ẋ = −y + bx2y, ẏ = x + a1x
2 + a3y

2 + a4x
3 + a6xy2, (5.1)

under the condition a1 �= a3, and has identified two new isochronous cases which are not
included in the previous classification by Chavarriga and Garcia [11, 12]. We show how the
same may be carried out in a simple way following roughly the method outlined above.

8
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Figure 2. Graphs of the potentials V (x) in table 3.

Table 3. List of cases when V (x) is mapped to an isotonic potential.

Case II Parameter Potential Canonical Cf [15]
Subcase values V (x) variables theorem 7

(i) a6 = − 1
4 a1 = a2 = a3 = 0 1

8 (−4(1 + x)−1/4)2 P = p(1 + x)5/4 Case 3

+ 32
(−4(1+x)−1/4)2 Q = −4(1 + x)−1/4

(ii) a6 = − 1
2 a1 = 1

2 , a2 = a3 = 0 1
8 (−2(1 + x)−1/2)2 P = p(1 + x)3/2 Case 1

+ 2
(−2(1+x)−1/2)2 Q = −2(1 + x)−1/2

(iii) a6 = − 3
4 a1 = 1, a2 = 1

3 , a3 = 0 1
8

(− 4
3 (1 + x)−3/4

)2
P = p(1 + x)7/4 Case 9

+ 32/81

(− 4
3 (1+x)−3/4)

2 Q = − 4
3 (1 + x)−3/4

(iv) a6 = −1 a1 = 3
2 , a2 = 1, a3 = 1

4
1
8 (−(1 + x)−1)2 P = p(1 + x)2 Case 8

+ 1/8
(−(1+x)−1)2 Q = −(1 + x)−1

The system (5.1) is equivalent to the following differential equation:

ẍ = (a3 + (a6 + 2b)x)

bx2 − 1
ẋ2 + (bx2 − 1)(x + a1x

2 + a4x
3). (5.2)

The corresponding equation for the JLM is

d

dt
log M +

(a3 + (a6 + 2b)x)

bx2 − 1
2ẋ = 0,

and has the following solution:

M(x) = (bx2 − 1)−(2b+a6)/b

(
1 +

√
bx

1 − √
bx

) a3√
b

. (5.3)

9
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Then from M = ∂2L/∂ẋ2, it follows that an appropriate Lagrangian for (5.2) is given by

L = 1
2M(x)ẋ2 − V (x), (5.4)

where the ‘potential’ V (x) satisfies

V ′(x) = −(bx2 − 1)−(1+a6/b)

(
1 +

√
bx

1 − √
bx

) a3√
b

(x + a1x
2 + a4x

3). (5.5)

The above form of the Lagrangian is suggestive of the fact that the JLM, M(x), may be
considered as playing the role of the mass (variable) of a particle undergoing one-dimensional
motion. The corresponding Hamiltonian may be written as

H = 1

2

(
p√
M

)2

+ V (x) (5.6)

where the conjugate momenta p = ∂L/∂ẋ = M(x)ẋ. Defining

P = p√
M

and Q = Q(x) (5.7)

to be some function of x such that the Poisson bracket {P,Q} = {p, x} is invariant, we are
led to conclude that Q′(x) = √

M(x). Suppose there exists a linearizing transformation such
that V (x) −→ Q2/2, then V ′(x) = QQ′(x) = √

M(x)Q, so that

Q = V ′(x)√
M(x)

= −(bx2 − 1)−
a6
2b (1 −

√
bx)−

a3
2b (1 +

√
bx)

a3
2b (x + a1x

2 + a4x
3). (5.8)

Differentiating (5.8) w.r.t. x and as Q′(x) = √
M(x) we arrive at the following identity, after

using (5.3):

a4(a6 − 3b)x4 + (a4a3 + a1a6 − 2a1b)x3 + (a1a3 + a6 + 3a4 − b)x2 + (a3 + 2a1)x = 0,

which implies

a4(a6 − 3b) = 0, (5.9)

a4a3 + a1(a6 − 2b) = 0, (5.10)

a1a3 + a6 + 3a4 − b = 0, (5.11)

a3 + 2a1 = 0. (5.12)

Assuming a1 �= a3 one can see that the above equations admit the following sets of solutions:

(S1) : a1 = −a3

2
, a4 = 0, a6 = a2

3, b = a2
3

2
(5.13)

(S2) : a1 = −a3

2
, a4 = a2

3

14
, a6 = 3a2

3

7
, b = a2

3

7
. (5.14)

These are precisely the values obtained by Chouikha in [14]. For the case S1 the JLM has
the following explicit expression:

M(x) =
(

1 +
a3x√

2

)−4+
√

2 (
1 − a3x√

2

)−(4+
√

2)

, (5.15)

while the coordinate Q is given by

Q(x) = x(a3x − 2)(2 − √
2a3x)

− 1√
2 (2 +

√
2a3x)

1√
2(

a2
3x

2 − 2
) . (5.16)
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One can integrate (5.6) to obtain the potential V (x) which in this case appears as

V (x) = x2(a3x − 2)2(2 − √
2a3x)−

√
2(2 +

√
2a3x)

√
2

2
(
a2

3x
2 − 2

)2 = 1

2
Q2. (5.17)

Thus the potential can be mapped to that of a linear harmonic oscillator and we conclude that
the origin is an isochronous center.

The corresponding expression for the JLM M(x), the coordinate Q and the potential V (x),
in case S2, are as follows:

M(x) =
(

1 +
a3x√

7

)−5+
√

7 (
1 − a3x√

7

)−5−√
7

, (5.18)

Q(x) =
x
(
1 − a3x√

7

)−
√

7
2
(
1 + a3x√

7

)√
7

2
(
a2

3x
2 − 7a3x + 14

)
14

(
1 − a2

3x2

7

)3/2
, (5.19)

V (x) =
x2

(
1 − a3x√

7

)−√
7(

1 + a3x√
7

)√
7(

a2
3x

2 − 7a3x + 14
)2

392
(
1 − a2

3x2

7

)3
= 1

2
Q2. (5.20)

From the expressions for M one can easily construct P, using (5.7),

P =
√

Mẋ =
√

M(bx2 − 1)y, (5.21)

and the appropriate values of b for cases S1 and S2, respectively.

6. Conclusion and outlook

The study of the isochronicity problem for parametric families of ODEs consists of a difficult
computational problem to find the necessary conditions for isochronicity. So it is desirable to
find a new approach to this problem. The manner in which we have identified the isochronous
cases of the Cherkas system rests entirely on theorem 1 of [10]. It does not require any
numerical computation. However, we would like to point out that the paper of Hill et al [15]
mentions a tenth case under theorem 7. We have not been able to include this particular case
in the above formalism, since it requires a4 �= 0. Furthermore, the procedure adopted in
this paper, based on the properties of the Jacobi last multiplier, appears to be applicable to
many other systems as shown by the analysis of the cubic system studied in [14] and has the
advantage of being remarkably simple.

Finally, it is known that apart from the harmonic or isotonic oscillators, there exist a
large class of isochronous potentials which are all nonpolynomial and nonsymmetric [23].
An interesting open question naturally arises in this connection, whether there are polynomial
systems of ODEs mapping to other classes of isochronous potentials. In this paper, we have
demonstrated that mapping to various other isochronous potentials is a very efficient method
to check isochronicity of some parametric families of systems of ODEs.
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